

UNDERGRADUATES PURSUING RESEARCH IN SCIENCE AND ENGINEERING (UPRISE)

DEPTS OF ELECTRICAL ENG AND COMPUTER SCIENCE, CHEMICAL ENG, AND BIOMEDICAL ENG

COLLEGE OF ENGINEERING AND APPLIED SCIENCE

SUMMER RESEARCH OPPORTUNITIES FOR UNDERGRADUATE students

APPLICATION DEADLINE: 02/25/2022

PROJECT TITLE: <u>Biosensors Breakthrough - Enabling Wearable Biochemical Sensing Beyond Glucose</u>

Jason Heikenfeld, 824 Rhodes Hall, heikenjc@ucmail.uc.edu, 513-884-4094

Project Description

This project will address the bottleneck which has prevented the medical field from moving beyond sensing of glucose with enzymatic sensors. Unlike enzymatic glucose sensors, electrochemical aptamer-based sensors are rapidly adaptable to measuring other molecules in the body. However, aptamer sensors degrade rapidly in live animals (less than 6-12 hours) and must be inserted through an highly-invasive incision. The student will be paired with a Ph.D. student to develop a multi-day longevity breakthrough for aptamer sensors and demonstration of that longevity on simple minimally-invasive needle sensors like those currently used in commercial wearable glucose biosensors. This breakthrough will then accelerate adoption of biosensors beyond glucose/diabetes into fields such as cardiac, kidney, fertility, and drug concentration monitoring.

- 1. area of the research electrochemical sensors.
- 2. research tasks the student will be performing sensor fabrication and testing.
- 3. training that the mentor will provide to the UPRISE student fabrication, experimental, data analysis, and innovation skills.
- 4. specific requirements, if any, that the mentor expects the student to meet none other than excitement/ambition about solving this important problem for biosensors.